Original Research
RNA Nanotechnology for targeted miRNA delivery:
1. Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D. Delivery of Anti-miRNA for Triple Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting to Stem Cell Marker CD133. Molecular Therapy. 2019 Jul 03;27(7):1252-1261.[link] [PDF]
2. Yin H, Wang H, Li Z, Shu D, Guo P. RNA Micelles for Systemic Delivery of Anti-miRNA for Cancer Targeting and Inhibition without Ligand. ACS Nano. 2019 Jan 22;13(1):706-717.[link] [PDF]
3. Lee TJ, Yoo JY, Shu D, Li H, Zhang J, Yu JG, Jaime-Ramirez AC, Acunzo M, Romano G, Cui R, Sun HL, Luo Z, Old M, Kaur B, Guo P, Croce CM. RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21. Mol Ther. 2017 Jul 5;25(7):1544-1555. [link] [PDF]
4. Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, Guo B, Guo P. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Mol Ther. 2016 Aug;24(7):1267-77. [link]
5. Shu D, Li H, Shu Y, Xiong G, Carson WE, Haque F, Xu R, Guo P. Systemic Delivery of Anti-miRNA for Suppression of Triple-Negative Breast Cancer Utilizing RNA Nanotechnology. ACS Nano. 2015 Sep 5;9(10):9731-9740. [link]
RNA Nanotechnology for targeted siRNA delivery:
6. Pi F, Binzel D, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Guo B, Evers BM, Guo P. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nature Nanotechnology. 2018 Jan; 13(1):82-89. [link] [PDF]
7. Zheng Z, Li Z, Xu C, Guo B, Guo P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J Control Release. 2019 Oct;311-312:43-49.[link] [PDF]
8. Li Z, Wang H, Yin H, Bennett C, Zhang H, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci Rep. 2018 Oct 2;8(1):14644.[link] [PDF]
9. Yang X, Xu Y, Wang T, Shu D, Guo P, Miskimins K, Qian SY. Inhibition of cancer migration and invasion by knocking down delta-5-desaturase in COX-2 overexpressed cancer cells. Redox Biol. 2017 Jan 26;11:653-662. [link] [PDF]
10. Xu Y, Pang L, Wang H, Xu C, Shah H, Guo P, Shu D, Qian SY. Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-y-linolenic acid for colon cancer suppression. Redox Biol. 2018 Dec 18;21:101085.[link] [PDF]
11. Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing using Multifunctional pRNA Nanoparticles. ACS Nano. 2017 Jan 24;11(1):335-346. [link] [PDF]
12. Cui D, Zhang C, Liu B, Shu Y, Du T, Shu D, Wang K, Dai F, Liu Y, Li C, Pan F, Yang Y, Ni J, Li H, Brand-Saberi B, Guo P. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep. 2015 Jul 3;5:10726. [link]
13. Lee TJ, Haque F, Shu D, Yoo J, Li H, Yokel R, Horbinski C, Kim T, Kim S, Kwon C, Nakano I, Kaur B, Guo P, Croce CM. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget. 2015 Jun 20;6(17):14766-76. [link]
14. Haque F, Shu D, Shu Y, Shlyakhtenko L, Rychahou P, Evers M, Guo P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today. 2012 Aug;7(4):245-57. [link]
15. Rychahou P, Haque F, Shu Y, Zaytseva Y, Weiss HL, Lee EY, Mustain W, Valentino J, Guo P, Evers BM. Delivery of RNA Nanoparticles into Colorectal Cancer Metastases Following Systemic Administration. ACS Nano. 2015 Feb 24;9(2):1108-16. [link]
RNA Nanotechnology for targeted chemo/Radiotherapeutics delivery:
16. Guo S, Vieweger M, Zhang K, Yin H, Wang H, Li X, Li S, Hu S, Sparreboom A, Evers M, Dong Y, Chiu W, Guo P. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nature Communications. 2020 Feb.[link] [PDF]
17. Piao X, Yin H, Guo S, Wang H, Guo P. RNA Nanotechnology to Solubilize Hydrophobic Antitumor Drug for Targeted Delivery. Adv. Sci. 2019 Sep;1900951.[link] [PDF]
18. Xu C, Li H, Zhang K, Binzel D, Yin H, Chiu W, Guo P. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Research. 2019;12: 41.[link] [PDF]
19. Shu Y, Yin H, Rajabi M, Li H, Vieweger M, Guo S, Shu D, Guo P. RNA-based micelles: A novel platform for paclitaxel loading and delivery. J Control Release. 2018 Feb 14;276:17-29. [link] [PDF]
20. Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing using Multifunctional pRNA Nanoparticles. ACS Nano. 2017 Jan 24;11(1):335-346. [link] [PDF]
21. Pi F, Zhang H, Li H, Thiviyanathan V, Gorenstein DG, Sood AK, Guo P. RNA Nanoparticles Harboring Annexin A2 Aptamer Can Target Ovarian Cancer for Tumor-Specific Doxorubicin Delivery. Nanomedicine. 2016 Nov 25. pii: S1549-9634(16)30207-6. doi: 10.1016/j.nano.2016.11.015.[link] [PDF]
22. Li H, Rychahou PG, Cui Z, Pi F, Evers BM, Shu D, Guo P, Luo W. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA. Are Resistant to I-125 and Cs-131 Radiation. Nucleic Acid Ther. 2015 July 20;25(4):188-197. [link]
23. Wang H, Elliplli S, Lee W, Li X, Vieweger M, Ho Y, Guo P. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. Journal of Controlled Release. 2021 Feb; 173-184.[link]
RNA Nanotechnology for Non-Oncology Areas:
24. Shi Z, Li SK, Charoenputtakun P, Liu C, Jasinski D, Guo P. RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels. J Control Release. 2017 Nov 21;270:14-22. [link] [PDF]
25. 31) Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 2014 Nov 1;42(15):9996-10004. [link]
26. 32) Jasinski DL, Khisamutdinov EF, Lyubchenko YL, Guo P. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties. ACS Nano. 2014 Aug 26;8(8):7620-9. [link]
27. Feng L, Li SK, Liu H, Liu CY, Lasance K, Haque F, Shu D, Guo P. Ocular Delivery of pRNA Nanoparticles: Distribution and Clearance After Subconjunctival Injection. Pharm Res. 2014 Apr;31(4):1046-58. [link] [PDF]
28. 38) Zhou J, Shu Y, Guo P, Smith DD, Rossi JJ. Dual Functional RNA Nanoparticles Containing Phi29 Motor pRNA and Anti-gp120 Aptamer for Cell-type Specific Delivery and HIV-1 Inhibition. Methods 2011;54(2):284-94. [link]
29. 33) Wang S, Haque F, Rychahou PG, Evers BM, Guo P. Engineered Nanopore of Phi29 DNA-Packaging Motor for Real-Time Detection of Single Colon Cancer Specific Antibody in Serum. ACS Nano. 2013 Nov 26;7(11):9814-22. [link]
RNA Nanoparticles Vector Development:
30. Guo S, Xu C, Yin H, Hill J, Pi F, Guo P. Tuning the size and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WIREs Nanomed Nanobiotechnol. 2019 Aug;311-312:43-49. [link] [PDF]
31. Li H, Wang S, Ji Z, Xu C, Shlyakhtenko, Guo P. Construction of RNA nanotubes. Nano Research. 2019 Aug;1952-1958.[link] [PDF]
32. Jasinski DL, Binzel DW, Guo P. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. ACS Nano. 2019 Apr 23;13(4):4603-4612.[link] [PDF]
33. Jasinski DL, Yin H, Li Z, Guo P. The Hydrophobic Effect from Conjugated Chemicals or Drugs on in Vivo Biodistribution of RNA Nanoparticles. Hum Gene Ther. 2018 Jan;29(1):77-86. [link] [PDF]
34. Khisamutdinov EF, Jasinski DL, Li H, Zhang K, Chiu W, Guo P. Fabrication of RNA 3D Nanoprisms for Loading and Protection of Small RNAs and Model Drugs. Adv Mater. 2016 Dec;28(45):10079-10087. [link]
35. Sharma A, Haque F, Pi F, Shlyakhtenko LS, Guo P. Controllable Self-assembly of RNA Dendrimers. Nanomedicine. 2016 April;12(3):835-844. [link]
36. Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.; Lyubchenko, Y.; Guo, P. Fabrication of 14 Different RNA Nanoparticles for Specific Tumor Targeting without Accumulation in Normal Organs. RNA 2013, 19, 766-777. [link]
37. Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature Nanotechnology 2011;6(10):658-67. [link]
Pharmaceutical Properties Studies on RNA Nanoparticles:
38. Abdelmawla, S.; Guo, S.; Zhang, L.; Pulukuri, S.; Patankar, P.; Conley, P.; Trebley, J.; Guo, P.; Li, Q. X. Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Molecular Therapy 2011, 19, 1312-1322. [link]
39. Jasinki D, Li H, Guo P. The Effect of Size and Shape of RNA Nanoparticles on Biodistribution. Molecular Therapy. 2018 Mar 7;26(3):784-792. [link] [PDF]
40. Piao X, Wang H, Binzel DW, Guo P. Assessment and Comparison of Thermal Stability of Phosphorothioate-DNA, DNA, RNA, 2’-F RNA and LNA in the Context of Phi29 pRNA 3WJ. RNA. 2018 Jan; 24(1):67-76. [link] [PDF]
41. Guo S, Li H, Ma M, Fu J, Dong Y, Guo P. Size, Shape and Sequence-dependent Immunogenicity of RNA Nanoparticles. Mol Ther Nucleic Acids. 2017 Dec; 9:399-408. [link] [PDF]
42. Li H, Zhang K, Pi F, Guo S, Shlyakhtenko L, Chiu W, Shu D, Guo P. Controllable Self-Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting. Adv Mater. 2016 Sep;28(34):7501-7. [link]

